@ https:/intrs.nasa.gov/search.jsp?R=19710026212 2018-07-24T08:03:41+00:00Z

. S
COMPUTATIONAL WORK AND TIME ON FINITE MACHINES

by

J. E. Savage
Brown University

June, 1871

N7(-35¢€8

) ES
COMPUTATIONAL WORK AND TIME ON FINITE MACHINES

by

J. E. Savage
Browvn University

June, 1871

’.

“This work was completed in part a
Propulsion Laboratory, California t
The Brown University portion has been supported
and by NASA under Grants NGR 40-002-C82 and NGR 4 90.

of this work was supporited by NASA under Contract NAS 7-100.

COMPUTATIONAL WORK AND TIME ON FINITE MACHINES
by
J. E. Savage
Division of Engineering
and
Center for Compﬁter and Information Sciences
Brown University

Providence, R. I. 02912

ABSTRACT

Measures of the.computational work and computational delay required
by machines to compute functions are given. Exchange inequalities are
developed for random access, tape and drum machines to show that product
inequalities between storage and time, number of drum tracks and time,
number of bits in an address and time, etc., must be'satisfied to compute
finite functions on bounded machines. Criterea for the design and use
of general purpose computers are developed and applications of the ex-

change inequalities are made to the language recognition problem.

1. Introduction

It is a fact, as Minsky notes [1], that very little is known about '"poss-
ible exchanges between time and memory, tradeoffs between time and program
complexity,” and other importaht parameters of computation. While exchange
relations are not the only form in which basic information about computational
processes could be expressed, they could be one important representation of
such information. In fact, Minsky has said that "the recognition of exchanges

is often the conception of a science, if quantifying them is its birth' [1].

1

‘

In this setting, this paper contributes to the conception and quantification o
(=31 i i Pl

¥

computer science by developing many exchange inequalities involving storage,
time and other important parameters of computation.

In this paper we examine the computation of finite functions (functions
whose domain is finite) on finite machines. In Secticn 2, two machine models
are examined, sequential machines which are assumed to execute a fixed number
of cycles and autonomous machines, which receive no exterhal inputs during a
computation and which execute a number of cycles dependent on their initial
states. We show that for every autonomous machine there exists a sequential
machine which computes the same function. ~

Two complexity measures are defined in Section 3 for finite functions.
These are combinational complexity and time complexity and we assume that func-
tions are computed by "straight-line' algorithms, that is, algorithms with no
loops and limited branching. Two sets of basic inequalities are developed
relating the combinational complexity and time complexity of sequential machines
and the number of cycles which they execute to the combinational complexity and
time complexity of the functions which they compute. These inequalities provide
a natural definition of computational work and computational delay and the

inequalities are interpreted as requiring that a minimum amount of work be done

énd a minimum delay be experienced by machines which compute functions of given
complexity. The time rate at which computational work is done by a machine is
defined as its computing power and this measure finds application in later
sections. Computational work Has been previously introduced in the study of
decoding for error'correcting codes [2,3] and time complexity has been used in
connection with studies of the time required to multiply and add [4,5].

The properties of the two complexity measures are surveyed in Section 4.
Included in this survey are tests which can be applied to functions which when
satisfied provide lower bounds on their complexity. Analytical methods which
prove useful in later sections are also developed here.

Computational efficiency is discussed briefly in Section 5 in terms of the
computational work and computational delay measures. It is shovm that simple
functions can be computed efficiently by -many different sequential machines
and that mosf Boolean functions are computable with modest efficiency on many
machines also.

In Section 5, tight bounds are developed on the combinational complexity
and time complexity of randem access, tape and drum (or disk) storage units.
These bounds are used in Section 6 together with the inequalities of Section 2
to provide exchange inequalities for general purpose computers using storage
of these three types. It is shown, for example, that the computation of com-
plex functions on random access or tape machineslrequirés fhat the product of
the storage capacity and execution time of these machines be large. The zna-
logous result for drum machines shows that the product of the number of tracks
and exgcution time be large, which 1s a much weaker inequality. Inequalities
are also developed for on and off-line multitape machines. Among other things
these inequalities show that the execution time requived to compute a function

of combinational complexity C must grow linearly with C on drum machines,

at least as fast as vC on tape machines and it can also be shown that func-
tions can be computed in time’ independent of their complexities on random
access machines. These results suggest a hierarchy of storage units.

On the basis of computing\power two rules of thumb are given for the use
and acquisition of-storage units. We also carry out a calculation of/th@ oom-

puting powers of storage devices in a typical computing system to argue that

bulk auxiliary storage can materially increase: the execution time of programs t

are forced to interact heavily with it.

Section 8 uses the language recognition problem as one i1llustration of
the application of computational work and the inequalities derived in earlier
sections. Bounds are derived on the work required to recognize languages in
the Chomsky hierarchy and a language is given to suggest that the Chomsky
hierarchy and a hierarchy based on the work required to recognize languages do
not coincide;

Finally, in Section 9 inequalities which are developed in Section 2 are
used to bound the complexity of the most complex function which can be computed
by a quantum-mechanical computer with energy E in t seconds. This result is

used to show that these computers cannot compute most Boolean function of 180

or more variables in one hour with a kilowatt of power.

2. Computation on Finite Machines

In this section, we introduce two models for computing machines and we define
the finite functions which they compute. The first model is called a sequential
machine and it executes a fixed number of cycles, The second model is called an
autonomous machine and it executes a number of cycles which depends con its initial
state. These models have been chosen because tﬁey are representative of the ways
in which computing machines are used today. The.automomous machine models stored
programmed computers which act upon programs and data.

Definition 1 A (Moore) sequential machine is a sextuple S =<8, I, é, x, 0; T >

where- S, I and 0 are the finite state set, input alphabet and output alphabet,

of the machine, respectively, 6: S x I = S 1is the state transition function and

A: 8-> 0 is the output function. The machine produces T outputs includin

9

that determined by its initial state and it is said that § executes T cvcles.

Let 1" be the n-fold cartesian product of I and let (yl, Yoo =7 yn} €1n§ sES,

s(m), (n), n-1

Then, the extensions s x 1" » S, A : S x1 +0 of. &8 and X are

(1) _

defined by § 5, A =X and for n = 2, 3 ---

(n),_. s (n-1), '
) (s3 Yy ¥p2 =7 yn) = §(8 (s Y12 Yo2 77 Yn_l)a yn)

(n) sin=1)¢
Ah (s; Yy2 o0 777 yn—l) = A(o(n)(s; Yy 77 yn’l))

Definition 2 An autonomous machine is a quintuple A = <A, &, X, P, 0 > where

A and 0 are the finite state set and output alphabet, respectively> §: A~ A

is the state transition function, A: A =+ 0 1s the output function and

P: A~ {0,1} is the print function. The state set has distincuished ztates
s t =

peA called print states and P 1is the characteristic function of a set

F of print states, i.e. for a e A

5 lace T
P(a) ={

0a¢rF
. (n) (n) .
The extensions § : A=A, A : A+0,n=1, 2, 3--, of the functions
§ and X are defined by 5(1) = §, x(l) = A and
5 (a) = s P ay)
-1)
A M) = a6y

for aeA. The function fA: A > 0 1is then defined for agA by

£,(2) = 2%

where n > 1 is the smallest integer such that é(n)(a) e F . If no such integer

exists, then fA(a) is undefined. Then, it is said that A computes the partial
function f, .
——— A

For technical reasons, we want to limit our attention to sequential machines.
The following lemma is important because it demonstrates that every autonomous
machine which eventually prints can}be replaced by a sequential machine. The proof
is constructive and it exhibits a simple machine ﬁhich when adjoiﬁed to the autono-
mous machine creates a sequential machine. We show later that this simple machine,
adds in a minor way to the complexity of the autcnomous machine.
Lemma 1 Let A = < A, §, X, P, 0 > be an autonomous machine which computes
fA and which reaches a print state when started in any state. Then, there

exists an integer TA and a sequential machine SA = < SA’ — 6A, AA’ 0 TA >

such that fA is computed by SA

= Ax {0,1} x 0 and let (a, b, z) ¢ SA . If A is started in

state a' SA is started in state (a', 0, A(a')) if P(a) = 0 and in state

Proof Let SA

(a'; 1, a(an)), otherwise. Then, we define §,: S, - S, and XA,: S, >0

A A A A A
by
GA(a, b, z) = (6(3), b', z')
: AA(a, b, z) = z'
where
{il b=1, or P(a) = 1
b =
0 otherwise
z b=lorb=0,P(a) =0
z' = {

x(a) b =0, Pla) =1

The first component of (a,b,z) records the present state of A . The second
component assumes value 1 when A enters a print state and the third compo-
nent retains the output of A at that time. Once b = 1, the (b, z) pair re-
mains unchanged -thereafter, Since A executes at most T

A

SA will produce as its TA th output the value of fA . Thus,

cycles, the machine

(n)

A

(a,b,z) = fA(a) forn = T, and all a in A .
Q.E.D.
In the proof above the second and third coméonents of the state vector (a.,b,z)
represent a machine which has been adjoined to A to form SA . Since evervy
autonoumous machine can be replaced by a sequential machine, we assume in our

discussions below, that all machines are seqguential machines which execute fixed

numbers of cycles unless explicitly stated otherwise.

-7~

Consider next the interconnection of a set of sequential machines

{s S - SL,} each of which has a clock and makes one state transition every

1’ T2

clock cycle. Let the clock cycle lengths of the machines be Ty Tos =78 T
respectively, and assume that each length is a multiple of some length Ty
Since the clock cycle lengths may be different, it is important to know when a
machine makes a state transition. Ve assume that a state transition in a machine
occurs instantaneously at the end of its clock cycle and that the transition is
determined by the state of the machine during that cycle and by the value of the
input to the machine just preceding the end of the cycle. The last assumption is
important because signals on input lines of a machine in an interconnected set
of machines may change during one of its cycles. Note that a change in a machine
output occurs only at the end of a cycle and if a machine completes the number
of cycles it executes, then its state and output remain constant thereafter.

A sequential machine may have several input lines and several output lines.

The input and output alphabets represent sets of possible configurations of

signals on these lines.

2 L

An interconnection rule « for machines Sl, S, ===, S. 1is a partition
of the set of input and output lines of these machines into disjoint classes
subject to the restriction that no two outputs are in the same class. Classes

which contain no output lines are called external inputs and the remaining classes

are called internal inputs.

We assume that each of the machines Sl, - SL begins to execute simul-

T, cycles, respectively. Then

tanecusly and that they execute Tl’ == Ty

ra

interconnection rule = and the timing information determine which outputs and
external inputs in time are used by any given machine to make state transitions.

When this information is available, the functions computed by Sl’ - SL can

be composed to form the functions compufed by the collection of machines. We
do not explicitly state the functions computed here because the notation re-

quired to do so would obscure the result.

3. Measures of Functional Complexity

In this sectidén, we define "straight~line? or fi-algorithms and we show the
equivalence of the graph of such algorithms and combinational machines. We also
define two measures of functional complexity, combinational complexity and time
complexity, and we establish two inequalities involving them. These inequalities

will be used repeatedly to derive many of the major conclusions of this paper.

o,
Befinition 3 Let @ be a finite set of primitive operations h_ €0, hi; rt ez

1

where I is some finite set. Let I =I U {Xl’ Xy == XN} be the data set

23

where each X, 1is a variable over I . Then, a K-step Q-algorithm with data
i

set T is a K-tuple B = (B,, B,, ——,8,) where at the kth step B, T or B =

1’ 2 e k

, ——, k_) for some h. eQ and k.
1 n, i 3

(hi; k <k,1lg3«g n; . If g el we

associate with it the function E; which is either a constant or a function

which identifies a variable Xi . If B = (hi; k -, k) we associate the

k 1% 7 n,
recursively defined function B, = h(R. , ---, B.) . The
k ik k)
1 n,
i
Q-algorithm B 1is said to compute the functions §; s Eﬁ ,~——§g where
1 2 q

B, B ,--, 8B are any of the non-data steps of B8 . A set & is said
m,’ “m, mq

to be complete if every function £: £ > L can be realized by scme {-algorithm
(For example, the set Q consisting of the 2-input AND, 2-input OR and the NOT

functions is complete for Bcolean functions.) We assume that 0 is compl

i

-
i

To each Q-algorithm we asscciate & directed, acyclic graph as indicated
below.

Definition 4 The graph G of a XK-step Q-algorithm B is a set of nodes which

are in a 1-1 correspondence with steps of 8 and a set of labeled directed edges

~9-

between nodes. If Bker, the corresponding node of G has no edges directed
into it and is called a source node. If Sk = (hi; kl, —_— kn) , the node

i
corresponding to it has ni edges directed into it from nodes corresponding to

steps B, , --, Bk . Purtherﬁore, these edges are labeled to retain the order
n,

of the steps as argﬁments of hi . A node which has no edges directed from it is

kj

called a terminal node.

In this paper, we limit our attention to Q-algorithms where I = I, = {0,1} .
n,
Therefore, the primitives hi: 221 > 22 are Boolean functions and the graph of

an Q-algorithm is commonly known as a combinational machine or a switching circuit.

There will be very little loss of generality due to this restriction and most
results derived will hold for Q-algorithms over arbitrary but finite sets I
We now state two measures of functional complexity.

Definition 5 The combinational complexity of the set of Boolean functions

{f , £,, ---, £} with respect to the set of primitives @, C (f , f

1? 27 Q1 v e fr} 3

is the smallest number of non-source nodes in any graph of an Q-algorithm which
computes these functions.

Definition 6 The length of an §-algorithm is the number of edges on the longest

directed path of its graph. The time complexity of the set of Boolean functions

{f,, £,, -—-, £.} with respect to the set of primitives @ , DQ(f . f2, ——— £),
1° 72 r 871 r
is the length of an Q-algorithm of shortest length which computes these functions.

Combinational complexity should be interpreted as the number of logical op-
erations required to compute a set of functions. Since every logic element intro-
duces some delay into a circuit, time complexity should be interpreted as the time
required to compute a set of functions.

The functions computed by Q-algorithms with Q a set of Boolean primitives

are Boolean. However, the functions computed by seguential machines are not Boolsan,

-10-

in general. Thus, if the complexity of these functions is to be measured, we

must create representations for them in terms of Boolean functions. To do this

we first define an encoding.of a set B , h: B » 22 to be a 1-1 map of B into
for some m . If f: le—-pr > Bix—ané is a non-binary function and if (bl3
— — : ' _— t | I T :
, bp) eBl % pr, (bl, R bq) eBl b qu , then we define
m m m! m!
. 1 —— D 1 —— q
£=: 22 X=X 22 > 22 X--X 22
by
% b B = TRt —ew RI(BH!
f (hl(l), , hp(bp)) (hl(bl), hq(bq))

where f(bl, by, ==, bp) = (b!, by, =, bé) and h; is the encoding of B,

and h% is the encoding of B% .

The definition of the combinational complexity of the Ffunctions flf - fr
is now extended to non-binary functions and is called Cg (fl’ -— fr) . This
is defined as the minimum over all encodings of CQ(f*, -, fg) . The definition

of time complexity is also extended to non-binary functions and is called

Dg(fl, - fr) - Unless confusion is likely to arise, we shall use C, for

E - E
CQ and DQ Lor DQ .

We are now prepared to state the major results of this section.

Theorem 1 Let Sz = <S§ I 8 A 0 T,> for 1 <2 <L and let S have

m
ZQ

A RS A A A 3
cycle length Ty - Let the machines Sl, 82, - SL be interconnected according
to rule <« and let this cocllection of machines compute the functions f15 f2} -
fr . Let E2 be a set of encodings for the domains and ranges of Sis S% b I2

¥

and XR: Sl > Oz subject to the restriction that the same encoding is used for

@

each occurence of S, - Let CQ(SQ, A3 By

62 and ll with the encodings El . Then,

E,) be the combinational complexity of

~11-

L
-, fr) < min £ c(8,, 2

Cc.(f :
ot Mo
Ej-—-E #=1

Q"1 Bl) TQ

where the minimum is over the encodings with the restriction that all machine
inputs in the same set of external or internal inputs be assigned the same
encodings.

Prosf Given an Q-algorithm which computes &,, A, with encodings E

2’ 7L L,

an Q{-algorithm can be constructed which computes all of the functions computed
by S2 . This is done by constructing TR co?ies of the Q-algorithm for

(5£, 12) and connecting the state output of one copy to the state input of
another so that a chain is formed. This algorithm has combinational com-

E)T, .

plexity equal to CQ(5£, Ags BT,

The interconnection rule and timing information determine which externzl
and internai inputs in time are used by the various machines to make state
transitions. We conétruct Q-algorithms as indicated above for each of these
machines and then form connections as indicated by the interconnection rule
and the timing information. These connections do not create any loops and
an §-algorithm has been created which computes the functions computed by the
collection of machines. Note that in making connections, it is assumed that
encodings of inputs and outputs which are connected are identical.

The theorem follows by choosing encodings which minimize the bounds on
combinational complexity. G.E.D.
Given a combinational machine which realizes the transition and output

function of a sequential machine S, we could realize S as shown in Fig. 1
by connecting the combinational machine to a bank of binary memory cells. Then,
a combinational machine equivalent to S can be constructed as shown in Fig. 2

by streching 8. It is often helpful to think of machines in these terms.

-12-

Corallary Under the conditions of Theorem 1, let CQ(SQ) be the minimum

over all encodings Bg of CQ(Gz, Alg EZ)' Then,

~

‘ L
C(f , ==, £) < C (S)+ min "z ¢ (8 , A 3 ET
Q1 R M ¢ ? > 2
o B, a8 gde 0OV AR (2)
. L#%0
where the minimum is over all encodings Ez, 2#’20 , Wwith the restriction
that encodings of the external and internal inputs to machines SRﬂ Q#,io
be consistent with the encodings which minimize CQ(cS2 » XA, 5 By).
o o

Proof The inequality is valid because the encodings to the Q-algorithm con-
structed above for S2 can be held fixed and the other encodings chosen to
minimize the bound. Q.E.D.

Theorem 2 Under the conditions of Theorem 1, let D_(8 Az; Ez) be the time

Q
complexity of 62, Az with encodings EZ . Let
RQ(Sl -F, SL) = min : max Dﬂcﬁz’ Ay Eﬂ}
Ej, ==, B, 1<2<L T,

where the minimum is over all encodings with the restriction that each machine
input in the same set of external or internal inputs be assigned the same en-

coding. Then,

Dﬂ(fl’ £0 =7 Ir) < QRQ(Sl, - SL) [mfx T, 12] (3)
Proof The bound applies to the {-algorithm which was constructed in the
proof of Theorem 1.

Consider the longest path P through the graph of this algorithm and

suppose it passes consecutively through the graphs assoclated with machines

13-

$5,,S8, , ---, 8 . Let the path pass through the graph associated with Si

21 22 2N 3
at an input given to Sl just prior to its m, th state transition and at
j B
an output produced by Sz. following its ny th transition,l < § < N. Then,
J J
1¢< my < n, < Tz. - 1 and n,T < my Ty because if this second
3 3 3 33 i+l T3l
condition is not satisfied, the my th transition of S2 cannot depend
j+1 j+1
on the n, th output of Sy -
3 3
In the graph which has been constructed for S2 , the section of the path
. , o -3
P passing through it has length (nQ. - m, ¥ 1) DQ(SZ.’ Xz‘; EZ.) . But
I 3 i n B I
n, <m it . Thus, the length of P namely, D , is bounded by
L. L. T ?
3 jtl L,
]
N
D<z: (m T -m, T, + t.,) D_(8 X, s E_ /1
. L. L. L. Q L, L. T, L
=1 3+l i+l 3073] 3 3 3 3
where we have chosen to define m T, =D, T, Since n, ¢ T2 -1,
‘ N+l TN+l N N N N
it follows that
N-1
D< [max DQ(GZ’ A5 Ey) 1Lz T, v T, 1]
1<2<L T, j=1 3 N N
. N-1
But if this chain of N machines is to exist, it must be that I T, £ {TR ~l}?l
j=1 73 N N
Using this inequality and minimizing over the encodings El’ --, E_ we have
Le
the result of the theoren. Q.E.D,

These two theorems suggest the following definitions which we shall use

in interpreting these results.

-1l

Definition 7 A sequential machine S = <S, I, §, A, O3 T> with cycle length

e
v

T 1is said to do computational work W = Cé (S)T .and to introduce a computational

E3 &
delay A = DQ(S)T where Do (S) 1is the minimum of DQ(G, X3 E) over all

encodings E . Also, the computing power PQ(S) is defined as EQ(S) = C;{S)/T .

The computational work W and computational delay A of a collection S, 82, -y S

with cyele lengths and interconnection rule « are given by the

Tis TTs T
upper bounds in Theorems 1 and 2,respectively.

Computational work W is interpreted as the equivalent number of logical
operations performed by sequential machines and is an analog of mechanical work.
Theorem 1 states that a set of functions can only be computed by a set of
machines which do at least as much computational work as the combinaticnal com-
plexity of these functions. Thus, complex functions must be computed by many
machines (L large) or by a few machines each of which does a large amount of work.
This in turn ﬁgans that these machines execute many cycles, have many equivalent
logic elements or botﬁ.

A machine which Has cycle length 1 and executes T cycles runs for a
time Tt . Thus, it does work at the rate of P = %%- and by analogy with
mechanical power, we call P computing power.

Logic elements introduce delay in circuits, so we interpret computational
delay A as the equivalent delay introduced by sequential machines. Then,
Theorem 2 states that a set of functiors can only be computed by a set of machines
if the machines introduce a computational delay which is at least as large as
the time complexity of these functioms. Thus, to compute complex functions
some machines must introduce a large delay or run for a long time.

We finish this section with a theorem which demonstrates that an inequality

like that of Theorem 1 holds for autonomous machines.

-15-

Theorem 3 Let A = <A, §, A, P, 0> be an autonomous machine which computes
fA and which prints when started in any state, Iet CQ(G, A, P; E) be the
combinational complexity of &, A and P with respect to the encodings E

which encode the range of P with the identity map and which encode 0 and A

with the 1-1 encodings h: 0 - 2% and g: A= IT . Let CQ(A) be the

2 2
minimum of CQ(S, X, P; E) over all encodings E and let ng be the integer
n
in the minimizing encoding ho: 0 -~ 220 . Then, if Q contains the 2-input

AND element, the 2-input OR element and the NOT element, we have

CQ(fA) s(CQ(A) + 50 +1) T,

where TA is the maximum number of cycles executed by A when it first prints.

C | A
- Let “DQ(A) be the minimum over encodings E of DQ(G, X, P; E) which is the

time complexity of 6, X, P subject to the encodings E . Then,

DQ(fA) < (DQ(A) + 3) TA

Proof We use the machine S, constructed in the proof of Lemma 1. Let z ¢ ©

A
m
o e e e .
and let ho(z) = (xl, -, xno) . Let g, A~ 22 be the minimizing enceding
g , let ae A and let go(a) =z (yl, -, ymo) . Then, we represent SA? Ay of
& & &%
SA and P of A by §,, AA and P given by
. ,
- . 1] +
SA(go(a), b, ho(z)) = (go(d(a)), b', ho(z)
AS(g (2), b, b (2)) = h (z")
A8 B Pa By z = AtE
ES
P (go(a)) = P(a)
where

b' = b + P(a)

t ! t 1 i3
and if h _(z') = (x,, x,, —-, x_) and h (A (a)) = (x;, --, x_)
o i 2 ng o) 1 °

th S « -
en x5 % xs - (b + P(@) + & - P(a) - b

~16-

Here . denotes AND, + denotes OR and = denotes NOT. The graph of the

Q—algdrithm that has been constructed which realized 6&,, A\, has 5 n =+

A’ A o
* & k3)
CQ(A) non-source nodes, so CQ(SA) <5 n_ + CQ(A) and the first inequality

b ES P
follows. For the second, construct the functions SA, XA and P using the

encodings which minimize DQ(S, X, P; E) . Then, the length of the @-algorithm
realizing SA’ Ay is at most D;(A) + 3 (the length of the graph generating x;)
and the second inequality follows. Q.E.D.
We have demonstrated that the function computed by an autonomous machine

A which prints when started in any state can also be computed by a sequential
machine and that inequalities like those in Theorems 1 and 2 can be established.
The new inequalities have C:(A) and D;(A) increased by terms which are generally
small. The number of cycles TA involved is the maximum number of cycles A

executes before first printing. Hereafter, we model all machines by sequential

machines taking into account the results of Lemma 1 and Theorem 3,

4. Bounds on Complexity

A brief survey of impoftant results concerning combinational complexity
and time complexity is given in this section. We begin by stating two tests
which can be applied to binary functions to derive lower bounds on their com-

binational and time complexity.

n

A Boolean function f: 22 - Zé is dependent on variable Xy if thers
exist values for Xi, ----- s Ki 1o i 77 % "such that f(xl, ------ > ®e g
1, %595 — > xn) # f(xl, —=s Xy_1s 05 Xp0s oo, xn).

Lemma 2 Let £: Zg > 22 be dependent on each of its variables. Then,

if rxi is the least integer no smaller than x ,

-17-

v

riogrﬁT4

: | Co(£)

DQ(f)

1A'

where r is the fan-in or maximum number of variables of primitives of Q .

The proof of the fifst equality is straightforward and follows from an
accounting of the Aﬁmber of edges into and out of nodes in the directed graph of
an Q-algorithm computing £ . The secénd inequality has been established by
Winograd [4] for cifcuits which may have loops, so it applies to combinational
circuits as we have defined them, since they do not have loops.

No test on Boolean functions is known which when satisfied provides a lower
bound on combinational complexity which grows faster than linearly in the number
of variables on which the function depends. This is true despite the fact
that combinational complexity has been actively studied for well over twenty
years. Similarly, no test is known which improves on the bound to time complexity
by more than a constant multiplicative factor. However, it can be shown
with the aid of Specker's theorem [g] thét a function which violates the
conditions of this theorem has a time complexity which is larger than riogrﬁj .

Now we state two results which are useful in bound%ng the complexity (time
or combinational) of the most complex function in a class. .They are not substi-
tutes for tests on functions which provide bounds but in the absence of strongsr
tests they do provide some information of value.

Iﬁeorem 4 Consider a class of N binary functions £: Zg - E; and fix
e, 0 <e<1l. Let @ be a set of Boolean prifnitives of fan-in r and let
the size of @ be |2| . Then the fraction I of these functions with

combinational complexity exceeding

= T log, log, N - max(m+l, (n+1)/r)

-18-

is bounded below by F & 1 - N ©
Proof Consider the graph of an Q-algorithm which has ¢ non-source nodes

and which computes f: 22 > Zg . Source nodes can have any one of the

following m+2 labels: 0, 1, xi, X X, We attach distinct labels to

23 e

the ¢ non-source nodes and note that these have at most rc edges directed
into them. An edge directed into a node can originate on at most one of
¢+ m+ 1 differently labeled nodes, since loops are not permitted in the graph.

Therefore, there are at most (c + m + 1Y distinet graphs.

Since a graph is to compute f: 22 - Zg , N nodes must be identified
as output ncdes. Since there are at most " ways to choose these nodes, at

re 4 ; 5 .
most (c+m+ 1)TCTH functions f: Eg - Zg can be computed by Q-algorithms

with ¢ non-data steps. The number of such functions which can be computed

with at most C non-data steps is bounded above by (C + m + l>(rC ta+l) .

Using the value of C given above it is easy to show that the number of

functions f: 22 - 22 computable in that many steps is bounded above by
Nl*s . Therefore, the fraction with combinational complexity less than or equal

to C 1is bounded above by N"® . The conclusion follows directly. Q.E.D.

Zhis theorem and its proof parallel and extend results by Shannon for

contact networks [7].

m

Theorem 5 Consider a class of N Boolean functions f: 22 > 22 and fix

€, 0 <e <1l . Let 0 Dbe a set of Boolean primitives of fan-in »r and « =
1/¢r-1) ’ e fraati e P S tire eome

1og2[[Q] 2(m+2] . Then, the fraction F of these functions with time com

plexity exceeding
(l-s)logQN

]

D = logr [

is bounded below by F > 1 - NNE.

Proof (Following [5], Section 7) The minimum length graph of an Q-algorithm which

-19-

computes a Boolean function can be chosen to be a tree. There are at most

[jXplQI(i](m + 2) such trees of length £ since there are at most

L R ' .
r—l non-source nodes and at most 1r~ edges which can be directed from source

nodes labeled 0, 1, ® s XK. Summlng on £ , we see that there are

l? X23
no more than (L + 1) exulnt(i](m + 2)¥ graphs of length less

than or equal to L and at most this many Boolean functions £: 22 > I, can

be realized by them. The result follows by bounding the number of graphs by

1/(r-1) P : l-g
£la| =7 2(m + 2)] and equating the bound with N . Q.E.D.
Theorem 4 is now applied to three classes of functions f: Eg - Zg .

- binary symmetric functions, the binary linear functions and the class of all

the

. s m+ 1l)n . . mr .
such. binary functions. There are 2(‘) symmetric functions, 2 linear

m
functions (with addition and multiplication modulo 2) and 2n2 binary functions.

Therefore, for m and n sufficiently large, most binary symmetric functions

have v l-g (m+1)n (1-¢) (m+1) .
Cq (f) > 5 log2[(m+l)n] and D, (£) 3 log [—SE;TE;ET—- , most binary

llnear functions have approximately the same bounds and most binary functions

m : m
& l-€ n2 ~ "2
r m+loch and DQ(f) > IOgr[(l—E) logzm

have Cq (f) =

1.

Contrasting with these results it can be shown [8] that every binafy
symmetric function can be realized with combinational complexity no larger than
nm(3m + 2)/2 and time complexity bounded above by 2n + fiodeT when 0 is
the set of 2-variable Boolean functions. For the same set { , the linear
functions can be realized with C (£) ¢ n(2m-1) and D, (f) < fioc 2m| . Again

for this set Q , Lupanov [9] has shown that all of the binary functions csn

m

be realized with CQ(f) < n—§n (l+e) , 05 e ¢l , form 3 Mle) where M(ie) =+

® as £ >0 . Also, a disjunctive normal form realization of binary functions
has DQ(f) £n+ rlog2£T

A few comments are in order concerning the sensitivity of the two complexity

~20-

measures to the set § of primitives. As Muller [10] has observed, replacement

of a complete set of Q by a complete set Q' can be done by replacing each

element of Q be some fixed number of elements from Q' and vice versa. Thus,

CQ(f) and CQ,(f) can differ only by some constant factor. The same is also

true for time complexity for similar reasons.

-21-

5. Efficiency

The two measures of computational work W and computational delay
A and the inequalities of Theorems 1 and 2 provide two measures of efficiency.

Work efficiency, €y > is defined as the ratio of the combinational complexity

of a set of functions to be computed to the computational work performed by a

set of machines to compute these functions. Delay efficiency, S is

defined as the ratio of time complexity to computational delay.
There are many simple functions which are computed efficiently by many

machines. For example the minterm (Boolean) functions f(yl’ Y29~‘-Yﬁ>
Y
c c c

Re! l'yz % e 'y, ", where c, e{0,1} , y°=F , the INVERSE of y ,
yl = y and - denotes AND, can be realized with work efficiency g%é»é € < 1

when- @ consists of 2-input elements by a machine that executes T cycles
1<T<n. The transition and output function of this machine are shown
realized in Figure 3 which has an £ - input AND function (realized with

£ -~ 1 2-input AND'Y, a 2-input AND function, 2 2-input EXCLUSIVE OR's for
a total of 22 1logic elements and many binary cells offering unit delay.

The variables Yis === 5 ¥q and coefficients ¢ys === , ¢ are grouped into
sets of size ¢ , the machine executes T = rh/fT cycles and does work

W= 22-Fﬁ/2] € 4n . The minterm functions, however, can be shown to have com-
binational complexity equal to n-1 using Lemma 2. The saﬁe machine has

(fiogg iw + 2)T and if 1< T < XK, K a constant,

computational delay of A

e, § 1 since D, (f) = fiogg n| from Lemma 1 and

1
_— <
then for large n , 5K € € €
a construction argument.

It can alsc be shown that most Boolean functions of n variables can
be computed with a work efficiency bounded below by €y 2 l/n2 over & large

range of cycles by constructing a machine which realizes the minterm or dis-

junctive normal form decomposition of the function. While this bound can

-22-

undoubtedly be improved, it does illustrate that complex functions can be

realized by sequential machines with a work efficiency that is not too small.
Work and delay efficiency may prove useful in measuring the performance

of algorithms and mgchines. At this point, however, computational efficiency

is a relatively undeveloped concept.

8. The Complexity of Storage Devices

Storage devices which are capable of selective recall have the power to
compute, as we show in this section. We examine binary random access, tape and

drum (or disk) storage devices.

A random-access storage device is a sequential machine Sra =<8

L8 A, 0

3 T._ > where T is arbitrary, S is the set of
ra’ "ra’> "ra ra : ra

I
ra ra

M-tuples of stored words (W., W,, -- , WM) s Wj E(ZQ)b . Ira is the set of

1> T2

triples of read-write command, addresses and input words (r, a, WO)3 r e{0,1}

a e{l, 2, -, M}, Woa(Zz)b and 0 _ is the set of output words v a(Zz)b . Also

- : t 1 ' t
or;lgz a, Mo, Wy ==, W) = (W, ==, W) where Wy =W if a#j and wj = W _if a=j

M o/
(0 —_—— W) = - W == | =
and Sra(, a, WO, R NM) (Wo, . WM) . And Ara(r, a, W, W, s WM} v
where v = W_ . This is called a random access device because any stored word can be
accessed in any cycle.
A tape storage device is a sequential machine S, =< S_, I_, & _, A _, 0.5 T >

t 2 T2 % Mpr Ytk

where Tt is arbitrary, S, is the set of (M+l)-tuples of stored words and

t
head position p, (Wl, W2, -, WM’ p), where Wj e:(ZQ)'b and p e{1,2, - ,M} ,

It is the set of triples of read-write command, head position increment o and

input word (r, o, WO)'~where re{0,1} pe{-1,0,1} and WOECZQYZ 0, is the set of pairs

t

(v,p') of output words VE(EQ)b and head pesitions p' £{1,2,-M} . Also,

6él§%wo,wl, -= ,Wsp) = (W] --- Jil,p') where
{1 ptp € 1
p' =(M Dip 2 M

ptp otherwise

~23-

1 = s s ' [] s t — =
and Wﬁ Wj if j#p', Wj W, if j=p' and Gt(o,p, L . WM}
W

~~
=
H
1
-
=
=
L
o
o}
[a ¥
o>
't
.
i)
=
o
'.—J
i
]
}
At]
=
=
)
S
{

= (v,p') where v = Wp . Thus, the

tape unit reads, increments by -1, 0 or 1 and writes a word and the new head position.
a < S g Sa0 Moo Ogp T ?
where Ty is arbitrary, 4 is the set of (bM+l)-tuples of stored bits (word

A drum storage device is a sequential machine S

organized) and head position p, (W W - W -

11° '12° I] wlbs wzls -) wzb:a T M1°®)

and p e{1,2, -- , M} , I_ is the set of

wa’ p) , where Wji e L N

2

triples of write command r , input bit B and head address h, (r,8,h) where

r, eI, and h e{1,2, -- , b} and Ot is the set of pairs (8',p') of

2

output bits § € 22 and head positions p' €{1,2, -- ,M} . Also,

- = ! —— ! ' 1= 1 P < M-
5d(r,s,h,wll, ,wa,p) (wll, sy, oP) where wji Wj+1,i’ < 3 g M-1,
. - . - . o= .
l1¢<1g¢<b and wMi B if r =0 and I =h or wMi Wli’ otherwise, and

p'=ptl if ps M-1 and p'=1 if p =M . And ld(r,s,h,w

11° - 3wa§p)

= (B',p') where B8 =°Wlh if r=1 and B'=0 if r =0 . Thus, a drum
has b tracks and rotates in one direction. A head is selected, and a bit is
read from and into the track position under this head. The drum also has a
counter which records the present position of the reéd—write heads.

The random access unit is a reasonably accurate model of core storage units.
The tape and drum devices are abstractions of realAtape and drum units since the
latter usually access data in blocks and thev also exhibit large delays
bgfore reacting to a command. Access in blocks is possible by the addition of

an auxiliary machine which uses block addresses and the position of read-write

PR
na arum

3

heads to direct reading and writing from the storage units. Disk units
units are similar in operation and characteristics and the drum storage device
is an adequate model for disk units.

% % b F kS H ki 4
Thecrem 6 Let CQ(Sra)’ CQ(St)’ CQ(Sd) and DQ(Sra)’ DQ(St)’ DQ(Sd} be the

combinational complexity and time complexity of the transition and output

" YIo

functions of the random access, tape and drum storage devices, respectively.

Let & be the set of Boolean functions with fan-in of » = 2 . Then, if

W

b>4, M2 17 and b 1is a power of 2

- (s-b) ¢ CE(s) s (7s+4M), rlong_] € DE(s_) < (rlogrm'krlogrlogzﬂ-M}
(s-b) < CA(s.) < (78+5M), rlogrlﬂ € DE(S,) < ([log,] +1)

A
A

(b-1) < Ci(s)) < (ep) rlogrﬂ DE(Sy) < ([log bl+[log log bl+2)

where S5 = Mb is the storage capacity of each device.

The proof of this theorem is given in the Appendix., It is important to
note that the lower bounds on combinational complexity for each device
agree within a small multiplicative factor of the upper bounds. The bounds on
time.complexity are tightér vet, Asymptotically they are equal.

It is important to note that the bounds on complexity for tape and random
access storage units have the same dependence on stofage capacity and number
of words. This would suggest that they are in some sense equivalent devices.
Clearly, they are not equivalent for most problem solving, and in fact, a
random access storage device could be used in such a way that it simulates 2
tape device but the reverse is not true. We postulate that the two starag@
devices are equivalent for some applications of a sequential nature and that this

accounts for the same dependence on device parameters.

7. Computation on General Purpose Machines

In this section, we illustrate the use of Theorems 1, 2 and 3 bv applving
them to general purpose computers in which the principal storage medium is a
random‘access, tape or drum device. We show that product relationships on
storage, time, number of drum heads and other parameters, depending on the

storage medium, must hold if functions of given complexity are to be computed.

-25-

In particular, we derive such relationships for multitape Turing Machines.

We also indicate that sequential storage mediums are inherently less efficient
than random access devices and indicate the size of this inefficiency.
Finally, several rules of thumb are given for the use of storage devices based
upon the size of their computing powers.

Consider a simple model for a general purpose computer consisting of a
storage device and a second machine which acts as a central processor. Assume
that inputs and outputs to the pair pass through the second machine so that the
pair forms an autonomous seguential machine with its action determined by its
initial state. Assume also that they both have the same cycle length and execute
equal numbers of cycles while carrying out a computation. With this definition
of a general purpose computer we have the following
Theorem 7 Consider three general purpose computeré with random access, tape and
drum storage devices. Let them execute at most Tra’ 'I‘_t and Td cycles, to

compute the finite functions fra’ £, and f respectively, and assume that

t d’

the random access and tape units have M words of b bits each, and that the

drum unit has b, tracks. Let b and b, be powers of 2 and let Q contain

d d

the 2-input Boolean primitives. Then, to compute fra’ ft and fd the follow-

ing inequalities must be satisfied when b > 4% and M 2 17:

£ M
CQ(‘ra) < (K 7 S+ul)T ra

CQ(ft) < (Kt+78+5M)Tf

Colfy) s (Kd+8bd)Td

DQ(fra) s 2([1eg "+riod logzﬂ)T ra
Do) € 2([log]+ 1T,

Dn(fd) < Q(Fiocz é} +[1log log2b2ﬂ+2)Td

The second set of inmequalities holds for large M and bd . Here Kra’ K, and

Kd are constants of the machines and S = Mb 1is the storage capacity of the

“26=

random access and tape storage devices.

The proof is a direct consequence of Theorems 1, 2, 3 and 6 and the féct
that the central processor in each general purpose computer is fixed.

The interpretation of thesé inequalities is straightforward. -If complex
functions are to be computed on random access or tape machines which use a
large amount of storage, then a storage-time product inequality must be satisfied
as well as a product inequality involving time and the logarithm of the number
of stored words. Experience teaches that some form of exchange relation must
exist between storage and time on general purpose machinesand these inequalities
support that experience. It is somewhat surprising that the inequalities for
the drum (or disk) machine do not involve total storage capacity but only the
number of tracks. This suggests that many more cycles are required on drum
machines to compﬁte functions than would be required on tape or random access
machines with‘the same storage capacity. In fact, if the number of tracks on
the drum is fixed, the number of cycles required by a drum machine must grow
linearly with combinational complexity, and as we know from Section 4 this can
be nearly exponential in the number of variables on which the functions depend.

The tape machine described above is a finite version of a machine known as
a l-tape, on-line Turing machine. We now look at finite versions of multitape

Turing machines which are both on-line and off-line. An off-line tape machine

has a finite control through which at least two tape units communicate, One of
these tape units, called the input tape, has an input string written on it and

it is used as a read only memory. An on-line tape machine has at least one

working tape and no input tape. We assume that both types of tape machines produce

outputs through their controls, that they act as autonomous machines and that

n

<

i

their controls and tapes have equal length cycles and execute equal number

cycles.

-27-

Theorem 8 Let TMl be an on-line tape machine which computes fl and which

has M b-bit words equally divided among m tapes. Let TM2 be an off-line

tape machine which computes f2 , which has M b-bit words equally divided
among m working tapes and which has an input tape with n b-bit words.

If TMl and TM2 execute a maximum of Tl and T2 cycles to compute f,

e

and f2 » respectively then there exists constants Kl and K2 such that the

following inequalities must be satisfied:

Co(£)) < [K, + 7(S +)IT,

CQ(fQ) ¢ [K, + 7(nb + S + n +)T,
Do(£,) ¢ 2[[log, M/m] + 117,

Do(£;) ¢ 2[[log, max(n, u/m)] + 131,

where S = Mb and contains the Boolean primitives of fan-in 2. The second
set of inequalities apély for large M/m and n . In addition, if the tape
heads are set at precﬁosen positions at the ‘start of every computation, then the
following set of inequalities must be satisfied if fl and f2 are to be
computed:

Co(f)) s [K) + 7(b+1)m(2T +1) 1Ty

Cﬂ(fz) < [K2 + 7(n{b+1) + (b+l)m(2T2+l)]T2

]
-

Proof The first two sets of inequalities follow directly from Theorems 1,
3 and 6 and the fact that the controls ave finite. The last two inequalities
are a consequence of the fact that the tape heads always assume a set of pre-

chosen positions before each computation. Let Ml and MQ be the smallest

number of words with which § and f can be computed by the machines TM
1 2 : < 7 1

and TM2 . Then, each working tape of these machines has Ml/m and M,/m

words, respectively, and the tape heads cannot reach all of these words from

-28-

their starting positions if T, < (Ml/m—l)/2 . T2 < (Mz/m-l)/Z . Téking the

1
converse of these inequalities, the result follows by invoking the first two

inequalities. , Q.E.D.

and :f2 are complex and if the word size and number

If the functions fl

of working tapes of the machines TMl and TM2 are fixed, then Tl and TQ
must grow at least proportionally with /E;T?IT' and /55??;7', respectively.
We note from Theorem 7 that if f3 is computed by a drum machine with fixed
word size, then the number of cycles executed by it grows proportionally with
CQ(fS) . Also, with "table look-up" any function can be computed on a random
access machine in a time independent of its complexity and dependent only on the
number of binary variables required to represent its domain and range. Thus,
it would appear that a hierarchy of storage devices exists with thé ordering
determined by the manner in which words can be accessed. It would also appear
that Turing machines are poor models for general purpose computers since the
sequential nature in which they must search their tapes may seriously degrade
performance over that available on random access machines,

In the study of the computation of recursivé functions on Turing machines,
time and tape complexity measures (the number of cycles and tape squares aéﬁesseé}
are usually considered. If these recursive functions are truncated so that they
are functions on strings of length n or less, then Theorem 8 provides new
relationships between time and tape complexity whose combined rate of growth may
now be studied as a function of =n .

To illustrate the accuracy of Theorems 7 and 8, consider the "fetch function”
f: {l,?,—-—,M} - (22)b given by f£(3; Hys Wosmmms WM) = Wj . This function

fetches one of M words and its complexity depends on values assumed by

Wl——-, WM . TFor example, if each word has the same value, then Cp(f) =D (f) =0

of

. M . . -
Since there are b such functions, we can, however, using Theorems 4 and 5,

~20-

show that for large M and fixed €, 0 < € <1 , most fetch functions have

l-c Mlog2b
r logQ(Mlogzb)

(1-¢)
a

Co(f) 2 5 Dg(f) 2 logr[l + Mlong}
where o is a constant defined in Theorem 5 and r is the fan-in of @ .

The inequalities of Theorem 7 show that for large M at least one cycle
is required on random access or tape machines to compute most fetch functions
but that a number of cycles growing nearly linearly with M is required on
drum machines, Linear growth for the tape machinés is implied by the proof of
Theorem 8 when the starting positions of the heads are preset, However, a
fetch function can always be computed in one cycle on a random access machine
using table lock-up. On a tape machine, a fetch function can be computed in
one cycle if the words are accessed in sequence while a fetch functions can be
computed in a number of cycles linear in M on a drum machine or a tape machine
with fixed starting positions for heads. Thus, the bounds appear to be well
calibrated.

We turn now to the computing power of storage devices and develop several
"rules of thumb'" for their use in genefal purpose computers. Computing power
PQ(S) was defined in Definition 7 as the ratio of the combinational complexity
of a sequential machine S to its cycle length, PQ(S) = C&(8)/t . The
significance of computing power is that it is the rate ét which computational
work is done by a machine. Thus, if two.machines are given equal lengths of
time to compute a function, then the machine with the larger computing power
will cémpute the function more quickly if the inequality of Theorem 1 is satisfied
with near equality. These observations suggest several rules of thumb for the

use of general purpose machines with several types of main and auxiliary storage.

-30-

Rules of Thumb

1. To prevent one storage unit from assuming most of the (computational)
work load, choose units so that they all have about the same computing power.

2. Assign tasks to machinés on the basis of the size of their computing
powers.

In the absence of other information, computing power may be a useful basis
on which to organize a computer and its operating system.

Now consider a typical general purpose computer which has as main memory
a core (random access) unit having storage capacity of S = 4,1 x 10°% bits in
words.of 32 bits each and cycle time T, = lO—6 seconds. Let it have a drum
with bdr = 200 tracks, each with a capacity of 1.6 x 105 bits and a rotation-
al séeed of 3600 rpm. Thé bits are arranged serially on its track so its cycle
time or the time to read one bit is Tap = 10-7 sec. Let it also have a disk
(drum) unit with 16 disks, each with 4000 tracks and'each containing 5.8 = lOn
bits organized serially and a rotational speed of 3600 rpm. This unit has the
equivalent of bd = 6.4 x 10¥ tracks and cycle a length of T4 = 2.9 x 10

Using the upper bounds of Theorem 6 we have for the computing power of the

core Pc , the drum P and the disk P, the following

dr d

_ 13 _ 10 _ -
P,=2.9x10 , P, =16x10 , P,=1.76x10

12

Since the computing power of the drum and disk are at least an order of magnitude
smaller than that of core, it should be expected that the channel connecting
disk and drum to core and the central processor should act as a bottleneck for

the machine. This correlates with experience.

-31-

8. Language Recognition

In this section we illustrate the use of computational work and inequalities
developed in this paper by means of a brief examination of the work required to
recognize languages. Language fecognition is one function performed by most
compilers or translators and if it were to require a large amount of work it
could make compiling and translating costly.

A language L 1is a set of strings over some alphabet, say
Za = {0, 1, 2, --, a-1} , a an integer. The Chomsky hierarchy is well known and
knowledge of this hierarchy is presumed here. With each language L over E&
we gssociate an infinite set of functions {fg l n=1, 2, 3, -—-} defined as
follows: Let x be a string over Za and let 2g(x) denote the length of =x .

n-2g(x) | 2g(x) ¢ n, xel}

Given n and a language L , we define 'L = {xb
where béZa and bl denotes the concatenation of b with itself i times.

then, f[:(zau{b})n > {0,1} is defined by

fg(y) ={l 'Y € Ln
0 v £ L

The function fE has been defined as a function of n variables so that

Lemma l»can be used to lower bound its combinational complexity. In fact, we now
show that if L contains a string x of length fg(x) =k , 2 <k € n-1,

then fz depends on at least n-2 variables. Clearly fg has value 1 on
™% and 0 on xpiopnk-3-1 ., 1< 3 ¢ n-k-1 so it depends on the last n-k-1
variables of fg . Also, if we write x = W va where 2g(c) = 1 and

172

=1 e
zg(wz) 2 1, then % has value 1 on W cWan “ and 0 on W bwgbn T since

1

WlbW2 £ L . Thus, it also depends on its first k-1 variables or is dependent

L 1

on at least n-2 variables. We conclude that

-39-

Lemma 3 If xelL , 2 ¢ 2g(x) € n-1 , then Cn(fz) > {25%1 where v is the

fan-in of @ .

Proof Lemma 2 would apply if the function _fi were binary. It is not, so

some 1-1 encoding h : ZaU{b} > (22)M is assumed. Then, the encoded version

of fE clearly depends on at least one component of at least n-2 encoded

variables and the inequality follows directly from the application of

Lemma 2. | Qg.E.D.
We examine the work required to recognize the regular, LR(k) and context-

free languages. Context-free languages are exactly those recognized by off-line,

push-down machines and LR(k) languages are those recognized by deterministic,

off-line, push-down machines [11].

Theorem 8 Let L be a regular language. Then, there exists a constant A such

that fg can be computed with a computational work bounded by
W< An

If L is LR(k) , then there is a constant B such that fg can be computed
with a work bounded by
W<B n2

If L is a context-free language, then there exists a constant K such that

fﬁ can be computed with a work bounded by

WK ns

Proof The regular languages can be recognized by finite automata in real time.
Thus, the first bound follows. Knuth's algorithm for *the recognition of LR(k)
languages [11] uses an off-line tape machine and uses a number of cvcles and
tape squares which are linear in n , the length of an input string. This

£2

algorithm need only be modified to test for b's are the end of a string (it

can do this in linear time by reading from right to left first). Then using

-33-

Theorem 8, the second bound follows. The third bound follows in a similar
fashion from Theorem 8 and the existence of the Younger algorithm [12] which

. 3
recognizes an arbitrary context-free language in time proportional t¢ n~ and

with a number of tape squares pfoportional to n2 . : Q.E.D.

We use the following theorem to show that there are languages such that
the constants in Theorem 9 must be arbitrarily large.

: () > L be the

Theorem 10 Let L¥* be a subset of (22)n . Let fL* 5 5

characteristic function of the set L% . Then, for 0 < e <1, a fraction

n
F 312752 of the sets L* have
n
l-e 2
for n 2]Q[l/PA ﬁl%fl. where r is the fan-in of the set of primitives £

This theorem follows from the direct application of Theorem U and the fact

n

that there are 22 subsets of (22)n . Given anv language L over 22 , the

associated set I contains a subset L% of IO . Therefore, C (£H 2 ¢ (f..)
n , 2 QL QT LE

for this set L% . Also, the context-free, LR(k) and regular languages can
include any finite set. Therefore, they can include one of the most complex
sets for any given n . Since the most complex set L* has CQ(fL*5 which
grows nearly exponentially in n , the constants of Theorem 9 can be
arbitrarily large.

The bounds of Theorem 9 may suggest to the reader that there is a 1-1
correspondence between the Chomsky hierarchy and a hierarchy established on the

basis of computational work. To dispel such a notion, consider the language

2 2, 2, b
L={blbc " 2bec"3bc ---1ibec bji=1,2,3,---} where 1 Iis the

dyadic representation of integer i , b # ¢, b, céZQ and zk is the length of
k plus 1. L is context-sensitive because it can be recognized by a linear
bounded automaton but not context-free since it is not closed under application

. - . n
of the "pumping lemma" for context-free languages. The function fL can be

computed with a computational work bounded by
W<An 20g2 n

for some constant A since as ﬁe show, the set Ln can be recognized a tape
machine which executes n cycles and uses no more than logzn binary tape
squares. The tape machine stores 1 on its taﬁe, ascertains that the first
symbol is b , compares the digits until the next occurance of b with the
digits of 1 stored on its tape (moving the tape head from left to right), uses
the zl occurences of ¢ to add 1 to 1 to form 2 (moving the tape head
from right to left using "carry ripple through” addition), comparing the set of
digits until the next occurence of b with 2 , etc.. If any of these tests
fail, the input string is rejected. The number of binary tape squares required
to process a string of length n certainly cannot exceed 2og2n . Then the
inequality follows from Theorem 8. Note that this language'is processed in real
time. Also note that the linear lower bound of Lemma 3 applies. Thus, the

bound on computational work is tight for n such that Zogzn is small, that is,

for n in the range 1 to lO3 s Say.

9. A Quantum-Mechanical Bound on Complexity

In this section we derive a bound on the maximum complexity of any function
that can be computed in t seconds with E units of energy under the assumption
that the speed of operation of computers is so large that the quantum-mechanical
limit is approached and that the computers must be realized with binary logic
elements and binary memory cells. This assumption implies that the inequality
of Theorenm 1 applies to the actual machine,‘

The logic elements have several inputs and we view the action of cne element

as that of determining the state of each of its inputs by measuring energy levels

<35

and éomputing and registering an output state. We assume (as is true for solids)
that to discriminate between two energy levels with separation AE requires the
expenditure of AE units of energy. Thens'the maximum number of logic elements
X which can be used if no more fhan E units of energy are to be expended
satisfies
X ¢ E/AE

where AE 1is the minimum separationof energy levels in the computer.

Each logic element has a switching time At which cannot be less than the
time to measure the states of its inputs. Then, the number of cycles which a

machine can complete In t seconds, 7T satisfies
T <. t/At .
Also, AE and At are related by the Heisenberg uncertainty relation as follows:
AEAt 2 h/27

where h is Planck's constant. That is, a reliable measurement of an energy
difference AE requires at léast» At seconds where At satisfies this equation.

Then, for a function f to be computaSle in t seconds with E joules by
a single machine with X logic elements in T cycles requires that

Cﬂ(f) ¢ XT ¢ (Et) % 103“

where @ 1is the set of logic elements used for the realization of the "gquantum-
mechanical computers." It is doubtful whether this limit will ever be approached,
nevertheless, it iIs instructive to cbserve the following:

Theorem 7 Subject to the conditions given above, most Boolean functions

f: Zg > 22 with p = 160 or more cannot be computed in one hour.with one kilowatt
of powef (1 joule = 1 watt-second).

This result follows as a consequence of Theorem 4.

~36-

While it iIs difficult to believe that one would want to compute the most
complex Boolean functions of p variables, it iIs interesting that with
p = 160 they cannot be computed with a very sizable amount of power in a

considerable length of time.

-37-

10. Conclusions

In this paper, we have examined the computation of finite functions by
sequential machines and have developed two measures of complexity, computational
work and computational delay. 1Inequalities have been established. showing that
a minimum amount of work and delay is required to compute a set of functions and
these minimums are the combinational complexity and time complexity, respectively,
of this set of functions. These inequalities suggest two measures of computa-
tional efficiency which may prove useful in estimating the performance of com-
puter programs and machines. |

The inequalities involving work and delay have been applied to general
purpose computers with random access units, tape units or drum units as princi-
pal ‘storage to show (approximately) that for tape and random access units that
the product of time and storage capacity must satisfy a lower bound determined
by the compléxity of the functions being computed. "A similar but weaker inequa-
lity holds»for drum machines. One conclusion drawn from these results is that
the limited accessibility of stored words on tape requires that the number of
cycles executed to compute functions with complexity C on tape machines must
grow at least as fast as /C. On drum machines the number must grow linearly
with C while on random access machines functions can be computed with a
number of cycles which is independent of their complexitieé. This suggests
clear hierarchy on storage units which corresponds to fhe hierarchy established
on the basis of the ability of one device to mimick the behavior of ancther
device.

The computing power of a machine has been defined and used to suggest rules
of thumb for the use and acquisition of storage devices.

As an application of the measures end methods of analysis intrcduced in

~38-

'this paper we have examined the work required to recognize strings of length
n or less from regular, LR(k) and context free languages. Bounds are given
on the work required to recognize such languages, all of which are algebraic
in n. A context-sensitive language is given to suggest that the Chomsky
hierarchy and a hierarchy based on computational work do not coincide.

Finally, a bound is given on the combinational complexity of the most
complex function which can be computed by a quantum mechanical computer in one
hour with a kilowatt of power.

The results of this paper may suggest new ways of treating the computa-
tional problems of greatest interest, namely, the computation of finite functions

on finite machines.

-39~

Appendix

Proof of Theorem ©&

The object is to bound cg(s) and Dg(s) for the three machines. We
begin with lower bounds.

A binary encoding is given to addresses, head positions and increments with

oo

a* the encoding of a, p* the encoding of p, h* the encoding of h and

p* the encoding of p . Then, the binary representations for the cutput

b} Wl’ Ty st .Df:)

o® 1° o

functions are A?aﬁga*, W, Wy —, WM) = wa , k;‘(r, o%, W
= (W'p:, P*')])\(.:j‘-, (r3 B) h*: wll’ T was P{:) = (BT, p*') . For the random
access device, we form a new function which is the logical OR of the b digits

of W_ . This function is easily shown to depend on all of the Mb variables

in W --, W, and from Lemma 1 its combinational complexity is at least

12 "ps M

as large as Mb-1 . But b-1 2-variable OR functions are sufficient to
form the new function from A?a so the bound on Pra follows. The lower bound
on Pt follows an identical argument applied to A% modified by suppressing

p*' (which cannot increase its complexity). The lower bound on P; follows

from Lemma 1 by observing that B' depends on the variables W

J —
My Migo =7o Wy

The lower bounds on Ara’ At and Ad follow also from Lemma 1 by
observing that each component of Wa and WD (which identify Bgolean functions)
depend on at least M variables and B' depends on at least b wvarliables.

To develop upper bounds, we need a combinational machine which given a
binary encoding of a word address a¥* , an increment value p¥%* , or of a head
address h®* produces a 1 output on a line corresponding to that address and a
0 output on all other lines. Let this machine accept one of at most 2" binary
n-tuple addresses a* and let it produce é 1 on its ath line.and 0 on
other lines where a® 1is the binary encoding of a . Call this machine

A(n) . Then, if lj(a) is the output on the jth 1line of

4=

2 e

A(n) and if the binary encoding of 3§ is 3% = (¢

¢) n ' s
lj = Xl . X2 ¢ eem e Xn where < denotes AND, X° denotes X , the

1
INVERSE of X , and X denotes X . Then zj(a) is equal to a minterm and

y = cn) then

the time complexity of A(n) is\clearly bounded above by fiogzﬁT-. Also A(n)

can be produced from A(n-1) with the addition of 2" elements since each
c c .1 S c

minterm i SO A(n) can be produced from a minterm X

o chwE
1 n-1

of A(n-1) by the addition of one element. Thus, the combinational complexity
of A(n) is bounded above by 2(27-1)

Consider the random access storage device with transition function

1]

ara(r,a,wo, W,y ===y W.,)

1 M (Wi, W', -—=, W') and output function

22 M

r - = v . ' - . e ith
kré & W, W, R WM) v Each word is a b-tuple so let le be the it

component of the jth word. Then, we have W!, = W.. «(2.(a)+p) + W . " 2.(a)"
ji ji 3 ol 7§

1<ig<b, ; € 3J g g , and v, = jgl Ej(a) . Wji s, 1<1isg<b, where
+ denotes OR and ’Zl denotes the OR of M terms. Then, from these equations
3=

and the definition of A(n), Cé(sra) < 55 + (M + M-1)b + 2(2°-1) where
e < Mg 2" . From this it follows that Cg(SPa) < 7S + 4M . Also,
Dg(sra) < max(3 + riogQﬁT > 1+ [@ogQM] + (ﬁog2ﬁ1) where n < fog, 24 .
It follows that Dg(Sra) < riogQMT + {2og2£og22MT + 3.

Consider next the tape storage device with transition function
5t(rp,Wo, Wiy ==, W p) = (W!, -——,-W&, p') and output function
léﬁ’p°wo= His == Wy p) = (v, p') . Represent the head positions with binary
M-tuples p% = (ql, 9ys ===» Q) where qj(p) =1, j=p and qj(p) =0,
otherwise. Let p'# = (qi, Ags = qﬁ) . Trepresent p by a binary palir and
consider the function s¥* = (Sl’ Sys 33) realized by A(2) where S5 =1 if
j=2+p, o = 0 , otherwise. (CQ(S*) 8 , D (s*) ¢1, since g¥ is
realized by A(2)). Then, we have v, =

J
! = . 'Y . 3 -~ L A4 .} e
Q5 = qyuy Tspt Q5 * S, t a5y " Sy s 23 <M1, q =q (sl tsy) ta, s

et

~4]-

f

q& = qy - (32 + s3) + 93 ° S3 and ng = Wji '(§§.+ ;)+ woi . qj ‘r, 1 £ 1 <b,
1<3j< M. Therefore, Cé(St) £ 6+ M+ M—l)b'§ 5(M-2) + 8 + 5Mb ¢ 7S + 5M ,
if bz 4 . Also, it follows that Dg(St) ¢ max(1l + riog2Nﬂ s 6,86) g [ﬁogQMT + 1
since Tlogzﬁ] 25 . |

Finally, consider the drum storage device with transition function
Sd(r, B, h, Wigs === Wi s D) = (Wil’ ===y Wi s ?') and output function
ld(r, 8, h, Wigs == LU p) = (8', p') . Represent the state of the counter by
an M-tuple p* = (ql, Qys = qM) (and p'* = (qi, qé, — qﬁ)) where

q. =1 if j =p and qj = 0 otherwise. Then, we have q% = 2¢ 7M.,

5
and .qi =

qj—l s

so the counter has zero combinational complexity. Let h¥* be a

Uy
binary rlogzﬁq—tuple and let it be used as input to A(n) , n € fiogZQBT

Let Zi(h) , 1 <€is<b , be the outputs. " Then, W%i 1< <M1,

Wj+1,i ?
b, Wi = 6 T - zi(h) W (7 ~“z‘i(h)) , 1gig<d and

B = (izl Wli . Zi(h)) «'v . Then, it follows that CS(Sd) £ 4 +2b+ 2> = 8b

11

A

o’

and Dg(éd) < max(3 + riogznT s 2+ rhogQBT.+ riog2ﬁ1) where n < riogQQE?

so DX(S,) s [Rog,b] + r20g220g22b-] + 2. “ Q.E.D.

T

References

10.

11.

12.

Minsky, M., "Form and Computer Science," Journal, ACM, Vol. 17, No. 2
pp. 197-215, (April, 1970).

Savage, J. E., "Three Measures of Deooder Complexity," IBM Journal of
Research and Development, Vol. 14, No 4, (July, 1970).

Savage, J. E., "The Complexity of Decoders - Part II: Computational
Work and Decoding Time,” IEEE Trans. on Information Theory, Vol.
IT-17, No. 1, (January, 1971).

Winograd, S., "On the Time Required to Perform Addition," JACM, Vol. 12,
No. 2, (April, 1965).

Winograd, S., "On the Time Required to Perform Multiplication," JACH,
Vol. 14, No. 4, (October, 18567).

Hodes, L., "The Logical Complexity of Geometric Properties in the Plane,”
JACM, Vol. 17, No. 2, (April, 1970).

Shannon, C. E., "The Synthesis of Two-Terminal Switching Circuits,”
Bell System Technical J., Vol. 28, pp. 59-98, (1949).

Harrison, M. A., Introduction to Switching and Automata Theory, Chapter 6,

McGraw-Hill, New York (1965).

Lupanov, 0. B., "A Method of Circuit Synthesis," Izv. VUZ,kRadiofizike,
No. 1, 120 (1958).

Muller, D. E., "Complexity in Electronic Switching Circuits,' IRE
Trans. on Electronic Computers, Vol. EC-5, pp. 15-19, (March, 1956).

Knuth, D., "On the Translation of Languages From Left to Right," Information
and Control, Vol. 8, pp. 607-639, (1965).

Younger, D, H., "Recognition and Parsing of Context-Free Languages in
Time n”," Information and Control. Vol. 10, No. 2, (1867),

JES/13n:1b

-3

ACKNOWLEDGMENT

The author acknowledges the encouragement and support provided by
Drs. E. C. Posner and S. Butman as well as conversations with them and other
members of the Communication Systems Research Section, JPL, and conversations

with Drs. L. Kleinrock of UCLA and L. H. Harper, U.C. Riverside.

~Ybpo

5]

i 5&@¢hiﬁe‘ﬁﬁ0

&5

i. Sequenti

E3

i

F

45

autyosoyy |pijuenbseg of jusjoainby |puoiipuiquor °z °Biy

AN

4

3 s2indwo Yoiyp eulyosow [olusnbag

£ *big

Y

O [T o =
r—~ e e e T

————— T,

